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As a model for a binary alloy undergoing an unmixing phase transition, we con- 
sider a square lattice where each site can be either taken by an A atom, a B 
atom, or a vacancy (V), and there exists a repulsive interaction between AB 
nearest neighbor pairs. Starting from a random initial configuration, unmixing 
proceeds via random jumps of A atoms or B atoms to nearest neighbor vacant 
sites. In the absence of any interaction, these jumps occur at jump rates FA and 
F B, respectively. For a small concentration of vacancies (Cv=0.04) the 
dynamics of the structure factor S(k, t) and its first two moments kl(t), k~(t) is 
studied during the early stages of phase separation, for several choices of con- 
centration eB of B atoms. For c B = 0.18 also the time evolution of the cluster size 
distribution is studied. Apart from very early times, the mean cluster size [(t) as 
well as the moments of the structure function depend on time t and the ratio F 
of the jump rates ( F =  FB/FA) only via a scaled time t/z(F). Qualitatively, the 
behavior is very similar to the direct exchange model containing no vacancies. 
Consequences for phase separation of real alloys are briefly discussed. 

KEY WORDS: Phase separation; clusters; Monte Carlo simulation; vacancy 
diffusion. 

1. I N T R O D U C T I O N  A N D  DESCRIPT ION OF THE M O D E L  

T h e  s t a n d a r d  l a t t i ce  m o d e l s  for  t he  u n m i x i n g  of  b i n a r y  a l loys  A B  a s s u m e  

t h a t  e a c h  l a t t i ce  si te  c a n  be  t a k e n  e i t h e r  b y  a n  A a t o m  o r  a B a t o m ,  a n d  

u n m i x i n g  is d r i v e n  b y  a r e p u l s i v e  e n e r g y  t A B > 0  w h i c h  o c c u r s  if  t w o  

n e i g h b o r i n g  l a t t i ce  s i tes  a re  t a k e n  b y  d i f fe ren t  k i n d s  of  a t o m s .  D y n a m i c s  is 

a s s o c i a t e d  to  th i s  m o d e l  b y  a s s u m i n g  r a n d o m  e x c h a n g e s  of  a t o m s  in  

~Pakistan Institute of Nuclear Science and Technology (PINSTECH), P.O. Nilore, 
Islamabad, Pakistan. 
Institut ffir Physik, Johannes Gutenberg-Universit/it Mainz, D-6500 Mainz, Germany. 

161 

0022-4715/91/0100-0161506.50/0 �9 1991 Plenum Publishing Corporation 



162 Yaldram and Binder 

nearest neighbor pairs, according to a transition probability chosen to 
satisfy detailed balance with the canonic distribution of states. (1 7) This 
model is isomorphic to the Kawasaki  spin exchange kinetic Ising model (8) 
and clearly is not a realistic description of the dynamics of real alloys, 
where a direct interchange of two atoms never occurs, and interdiffusion is 
possible only by a vacancy mechanism. (9'1~ A atoms can jump to vacant 
sites with a jump rate FA, B atoms can jump to vacant sites with a jump 
rate FB, if we disregard for the moment  the above energy CaB. By these 
processes, vacancies diffuse through the lattice and thereby lead to indirect 
exchanges of A and B atoms (Fig. 1). 

While in the standard model the parameters of interest are the reduced 
temperature kBT/CAB, the relative concentration C=CB/(CA+CB) of B 
atoms, and the time scale as set by an exchange rate Fex for the direct 
exchange of neighboring A, B atoms (in the absence of interactions), the 
present model contains additional parameters, namely the concentration of 
vacancies Cv (note CA + CB + Cv = 1), and the two jump rates FA, FB enter 
instead of Fex. While Cv would also affect the static properties of the model 
already (its critical temperature, phase diagram, internal energy, etc.), this 
effect becomes negligibly small when ev ~ 0. In real alloys in thermal equi- 
librium, the vacancy concentration in fact is very small, (9,x~ and therefore 
it makes sense to restrict attention to that limit. Although the static proper- 
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Fig. 1. Illustration of the vacancy mechanism of interdiffusion in ABV alloys on the square 
lattice (schematic). By suitable succession of jumps of an A atom (upper part) and a B atom 
(middle part), a site taken by an A atom may later be taken by a B atom (lower part). 
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ties of the model thus reduce to the standard model, it is not clear to what 
extent this is true for the dynamics: if it were true, one could introduce an 
effective exchange rate F ~ =  CvFAf(F), where f ( F )  is some function of the 
ratio F =  FB/FA of the jump rates. However, if such a mapping between the 
dynamical properties of the indirect exchange model and the direct 
exchange model did not hold, the standard application ~5'11'12) of the direct 
exchange model of binary alloys to interpret experimental data on the 
unmixing of real alloys would be very doubtful. 

Despite its physical significance, an extensive investigation of inter- 
diffusion in the ABV model is available only in the noninteracting case, 
6AB/kB T =  0. (13) There it was shown that interdiffusion occurs in general by 
a superposition of two exponential relaxations, and that simple proposals 
available in the literature to relate the interdiffusion constant to the jump 
rates FA, FB do not describe the computer simulation results accurately. 

Studying the dynamics of phase separation in an ABV model with 
interactions, one investigates processes far from thermal equilibrium, and 
then even more subtle effects are conceivable: the vacancies may preferably 
accumulate at the interfaces between A-rich and B-rich regions, for 
instance. Such an effect, if it occurs, would strongly influence the mapping 
between the phase separation dynamics of the ABV model and the direct 
exchange model. Another possible effect could be a preference of the 
vacancies for the regions where the element with the higher jump rate 
predominates. If F >  1 and cA > %, this could result in a "trapping" of 
vacancies inside isolated droplets of B atoms and a slowing down of 
the unmixing kinetics could result. Also, by choosing pair interactions 
~AA 5~ ~BB between AA (BB) pairs, one expects different vacancy concentra- 
tions in the A-rich and B-rich regions. Such effects are outside of considera- 
tion here, however, assuming a single nonzero energy parameter eAB. 

In the present work, we study the initial and intermediate stages of 
phase separation in the ABV model, choosing Cv = 0.04, kB T/eAB = 0.6 and 
studying the relaxation of the dynamic structure factor S(k, t), the internal 
energy E(t), and the distribution function nt(t ) of clusters containing l 
B atoms as a function of time in quenching experiments that start with an 
initially completely random configuration of the lattice (chosen consistent 
with the choice of Cv and %, of course). In previous work on the same 
model (14) it was shown that the critical temperature of the model occurs at 
kB Tc (Cv = 0.04)/s ~ 1.07 and that for Cv ~< 0.08 the rate Fk(t) of phase 
separation, defined as dS(k, t)/dt = Fk(t), depends on Cv linearly. There- 
fore, no systematic error is introduced by working with this vacancy 
concentration, although it is much larger than the vacancy concentration 
occurring in real alloys: it is useful to work with this relatively large value 
of Cv, however, since then the simulation program is reasonably fast and 
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in rather small lattices (linear dimensions L = 40 and L = 80 for L x L 
lattices) many vacancies are already accommodated. 

In Section 2 we present numerical results for several choices of F 
between F =  0.1 and F =  10 and study whether by rescaling the time scale 
with a factor v(F) a universal behavior is obtained. Section 3 contains a 
discussion and outlook for further work. 

2. RESULTS OF M O N T E  CARLO S I M U L A T I O N S  

Standard Monte Carlo techniques (13'15J6) were used to simulate the 
quenching experiments, using sample averages of typically 100runs for 
L x L lattices with periodic boundary conditions. The system evolves in 
time by randomly selecting a vacancy in the system and a randomly chosen 
nearest neighbor site of that vacancy with which now an exchange is 
attempted. If this site also is vacant, nothing happens, of course; if it is 
taken by an A atom or B atom, respectively, this atom jumps to the vacant 

5oo 

o~ ~" ,0o "" ~i 

i o-- i o-- 

#_~" 3 ~ 3 
~LO 

~u9 

5 O 0  
, . s , ,  

�9 400 �9 
�9 o~Do  

�9 o 300 Q 8  
o o Zo ~  

�9 D o o o 
Oo o 200 ~ o~ 

�9 A ~  A o 

I - = I  

5OO r 
, . . " '~ '~o , .  ~00 :Io 

eOO=oOOoooO~174 ooo AAQOO 

2 0 0  

500 
~174 

�9 ''~ t~O0 

, ~ 300 %o" 
"O~ 

~oo; . . . . . . . . . .  . .  , . , ; o  

~ o~s o~o ' o'>5 o, 

k/~ k/T~ 

ke 

otis o~o o~s 

Fig. 2. Smoothed structure factor S ( k , t ) = - ~ { S ( k  v l,t)+3S(k,t)+3S(kv+l,t)+S(k~+2,t)} 
plotted vs. k x [points are drawn at the discrete positions k 'v=(k~+k~+l ) /2  ] for CA= 

c B = 0.48, Cv = 0.04, u s ing  L = 80, and four choices of F = 1, 2, 5, a n d  10. T i m e s  t after the 
quench are indicated. Arrow shows the mean field estimate for k c (cf. text). 
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site with probabi l i ty  W A or WB, respectively. These transit ion probabil i t ies 
are defined in terms of the energy change 5YF involved in the move  as 

FA if 6Jt~ < 0 (1) 
WA= FAexp(--5~/kBT) if 5 ~ f f > 0  

{FB if 6 ~ < 0  (2) 
WB = Fn exp( - 6 ~ / k  B T) if 62/g > 0 

Wi thou t  loss of generality, we put  the larger of the two j u m p  rates FA, FB 
equal  to one. Of  course, necessary for the validity of the Mon te  Car lo  
a lgor i thm is WA ~< 1, WB ~< 1. We then measure  t ime in units of a t t empted  
Monte  Car lo  steps per vacancy. Since this a lgor i thm is not  straight- 
forwardly  vectorizable, scalar computers  were used: at Mainz,  we used an 
IBM6150 worksta t ion,  at P I N S T E C H ,  a VAX-780 computer .  F igu res2  
and 3 present  typical results for the structure factor  S(k, t) for k in the 
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Fig. 3. Smoothed structure factor S(k, t) plotted vs. k~ and various times after the quench, 
for (a) F= 5, (b) F=  i, and (c) F=0.2, and choosing CA =0.78, CB=0.18 , c v =0.04. 
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lattice direction, k~ = (kx, kz) = (v, 0) 2~/L, with v = 1, 2, 3,.... Qualitatively, 
these data look indeed very similar to comparable results obtained for the 
direct exchange model/1'3) Note that in most simulations of the direct 
exchange model (1 v) a circular average over the direction of k was used, 
wiping out eventual anisotropies of the square lattice. Although the Cahn-  
Hilliard theory (17) predicts roughly correctly (~4) the range of wave vectors 
(0 < k < kc) over which the structure factor initially grows after the quench, 
this growth is much slower than exponential, and the peak position km(t ) 
of S(k, t) steadily shifts to smaller wavenumbers as the time t after the 
quench proceeds. 

Since a direct comparison of S(k, t) for different values of F is difficult 
due to the statistical scatter still present in Figs. 2 and 3, we concentrate on 
the first two moments defined in the usual way, (~ 7) 

kl = ~, kS(k, t)/ S(k, t) (3) 
k / k 

f 

k / k  

where the direction of k again was chosen in the x direction of the lattice, 
as in Figs. 2 and 3. Figure 4a shows that in the accessible regime of times 
the behavior is still far from the expected law due to Lifshitz and 
Slyozov,~8) 

ka(t) ~ k2(t)~ t a, a = 1/3, t--* oo (5) 

Disregarding a slight curvature that is present in the data, one could fit a 
power law of the form of Eq. (5) to the data, as is shown by the straight 
lines in Fig. 4a, but the effective exponent a elf resulting from such a proce- 
dure would only be ae"~  0.08, and for increasing values of F the effective 
exponent a elf even would be smaller. Since in real alloys F is expected 
to be strongly temperature dependent {Fa=Taexp(-Ea/kBT) ,  FB= 
7Rexp(-E~/kBT), where the rates ~g,?~ and activation energies 
EA, EB are characteristic properties for each kind of atom, and 
F= (TB/Ta)exp[--(EB--EA)/kBT ] retains an Arrhenius-like temperature 
dependence}, changing the final temperature of a quenching experiment 
will mean that one also changes F. Observing then the relation kl(t) vs. t 
over a limited range of time, it is very likely that different effective 
exponents ae~(T) are found, which are physically not very meaningful, 
however: they only correspond to different regions of one master curve for 
kl(t)  vs. t (Fig. 4b), which has a slight curvature extending over several 
decades of time, and if one analyzes data from a single decade in time only, 
this curvature is easily overlooked and one can fit straight lines to the 
l o~ log  plot. 
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The analysis presented in Figs. 4a and 4b suggests that the dependence 
of the results on F can be absorbed in a rescaling of the time t into a scaled 
time t/r(F), where in our case the scale factor 1/r(F) behaves as 
[note r(F)=r(1/F) for CA=CB because of the symmetry against inter- 
change of A and B in this case] 

r ( 1 ) -  1, l / r ( 2 )  = 0.7, 1/~(5) = 0.35, 1/~(10) = 0.23 (6) 

This rescaling property is not an arbitrary "fitting phenomenon": we find 
that, using the same values of the scale factors in Eq. (6), also the internal 
energy (Fig. 5) and cluster size [(t) (Fig. 6) scale approximately. It is 
remarkable that this scaling property with r(F) as given in Eq. (6) holds 
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Fig. 4. ( a )  Log-log plot of the moments k 1 and k 2 vs. t i m e  t after the quench, for 
c a = c B = 0.48, Cv = 0.04, L = 40, and several choices of the jump rate ratio F as indicated in 
the figure. Straight line indicates a fit to a power law for F =  1. (b)  Same as (a), hut plotted 
against a rescaled time t/r(F), where z(F= 1 ) =  1, 1 / ~ ( F = 2 ) = 0 . 7 ,  1/z(F=5)=0.35, and 
1 / z ( F =  10)  = 0.23. 
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over a wide range of concentration CA, C B. In Fig. 5b some systematic 
deviation between the data for F =  10 and F= 0 .1  is seen: in fact, since 
these data refer to CA ~ CB, there is no longer any exact symmetry property 
between r (F)  and r(1/F)  to be expected. Clearly, if we allowed in Fig. 5b 
scale factors r (F)  somewhat different from those used in Fig. 4b and 
quoted in Eq. (6), which are appropriate for c A = % ,  a nearly perfect 
collapsing of the data on a master curve would be obtained. We have not 
done so, however, because the data for the average cluster size [(t) can be 
fitted with Eq. (6) rather nicely (see Fig. 6), although these data refer to 
exactly the same concentrations as Fig. 5 does. The scatter in Fig. 5 thus 
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Fig. 5. (a) Log-log plot of the internal energy E(t)- Eeq , where Eeq is the equilibrium value 
of the internal energy at kB T/eAB =0.6 at the coexistence curve, as determined in ref. 14, 
normalized per spin in a normalization where the ABV model is transcribed to a diluted Ising 
ferromagnet. All data shown refer to L = 40, c A = 0.78, cB = 0.18, Cv = 0.04. Various choices of 
the jump rate are indicated. (b) Same as (a), but plotted against a rescaled time t/z(F) using 
the same scaling factors r (F)  as in Fig. 4b and as quoted in Eq. (6). 
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may signify that either the time rescaling property is not exact or that our 
data still suffer somewhat from errors due to the use of too small a sample 
of independent runs, or both. 

At this point it is important  to recall that the different quantities recor- 
ded are sensitive to the long-wavelength concentration fluctuations, which 
are far from equilibrium in such a quenching experiment, in a somewhat 
different manner. E.g., in the average cluster size [(t) we have excluded 
clusters with sizes l <  10, following previous practice, (3'5) 

,:t,)= In,t,)/ Z 17t 
l ~  10 / l ~ >  10 
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Fig. 6. (a) Log-log plot of average cluster size l(t) plotted vs. time for L=40 ,  CA=0.78 , 
C B = 0.18, c v = 0.04. Various choices of the jump rate F are included. Straight lines indicate the 
power law [(t)~ t ~ .  (b) Same as (a), but plotted against a rescaled time t h (F  ) using the 
scaling factors 1/z(F) as quoted in Eq. (6). 
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Fig. 7. (Continued) 

nt(t ) being the average number of clusters containing l B atoms at time t 
in the lattice, normalized per lattice site (see Fig. 7 for examples of the full 
distribution). Thus, small clusters do not contribute to {(t), although they 
are counted in the internal energy. A comparison between Figs. 7a and 7e 
again suggests that the relation z (F)=r(1 /F)  is no longer an accurate 
approximation for an asymmetric state such as CA = 0.78, CB = 0.18. 

A test of the time rescaling property, which is not affected by the 
uncertainty about the optimal choice of 1/r(F), is performed by plotting 
E ( t ) - - E e q  VS. / ( t ) :  for each value of F this plot is a curve, with time being 
a parameter of this curve. If the time rescaling property held exactly, then 
the curves E(t) - Eeq VS. [ ( t )  for the different choices of F would have to 
superpose precisely. Figure 8 shows that this is only approximately true. 
This property becomes very well fulfilled in the late stages of the separation 
process, where [(t) is large. 

3. D I S C U S S I O N  

The main conclusions of this study can be summarized as follows: 

(i) The qualitative characteristics of spinodal decomposition in the 
ABV model with a vacancy mechanism of diffusion are very similar to the 
AB model with the direct exchange mechanism of interdiffusion. This 
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conclusion is corroborated by the analysis of the time dependence of the 
structure factor S(k, t) (Figs. 2 and 3, the cluster size distribution nz(t) 
(Fig. 7), and snapshot pictures of the configurations (Fig. 9). 

(ii) In the model with the single energy parameter eAB between A 
and B atoms and no other energy parameters egg, eBB etc., causing any 
vacancy clustering, the vacancies stay rather randomly distributed 
throughout the system; at least during the early and intermediate stages of 
phase separation, only a small enrichment of the vacancies at the interfaces 
between A-rich and B-rich domains is as yet observed (Fig. 9). We do not 
observe any significant enrichment of the vacancies in the phase with the 
higher jump rate. 

(iii) The effect of the jump rate ratio F =  FB/F a can approximately 
be accounted for by rescaling the time variable with a scale factor 1/z(F). 
I.e., if this time rescaling property were exact, we would have 

S(k, t, F)  = S(k, t / , (r) ,  1) (8) 

E(t, F) = E(t/z(F), 1) (9) 

nt(t, F)=n,( t /z(F) ,  1), {(t, F)=[(t /z(F) ,  1) (10) 

etc. Figures 4-6 and 8 test this time rescaling property. 
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MC Simulation of Phase Separation and Clustering 173 

....... :'+::-=::::=::= = = : :  . . . . . .  !~_~=L, ......... __~ 

. . . .  

iiiiiii!41i!iii -iiNi!ii!!iiiiiiiii!!iiil 
(a)  (b)  

Fig. 9. Typical snapshot pictures of an 80 x 80 lattice evolving with time for (a) c v = 0.04, 
CA =CB =0.48 and (b) Cv = 0.04, CA=0.78, C~=0.18, for F= 1 and a time step t= 5000 MCS 
(Monte Carlo steps) after the quench. A atoms are indicated as black squares, B atoms as 
crosses, and vacant sites are left blank. 

(iv) The approximate  numbers  for the time rescaling function 1/z(F) 
can be rather well represented by the approximate  formula 

r - ' ( r ~ > l ) = 2 ( l + r )  1, T l ( r < l ) = 2 ( 1 + r  1 ) ,  (11) 

(see Fig. 10). Equat ion  (11) results from the approximate  description of 
interdiffusion in a noninteract ing A B V m o d e l  by the "slow mode 
theory, ''(13) which suggests that  for CA=% the interdiffusion constant  
is simply propor t ional  to the geometric mean of the jump  rates, 
FAFs/(FA + FB). If time is measured in units of the larger j ump  rate and 
FB>FA, this means that the interdiffusion constant  is FA/(FA+FB)= 
1/(1 + F) ;  if FB < FA, however, the interdiffusion constant  is FB/(FA + FB) 
= 1 / ( F -  1 + 1 ). Thus, Eq. (1 1 ) results if we choose a normalizat ion r(1 ) - 1. 

Note  that the slow mode  theory does not  describe interdiffusion accurately 
even in thermal equilibrium; thus, it is not  expected that  Eq. (11) holds 
true exactly. In addition, during phase separation at the considered tem- 
peratures the system develops rather rapidly from CA = CB to separate 
regions of almost  pure A and pure B. There is no  reason that  a theory 



174 Yaldram and B inde r  10{ 
L 0.5 
ka 

"-  03 

0.1 02 03 05 1.0 20 3,0 5.0 100 

F 

Fig. 10. Time scaling factor r I(F) plotted vs. F for c A = c  B (circles) and approximate 
theoretical prediction T - I ( F >  1)= 2(I + F )  1, T - I ( F <  1)=2(1 + F - ' )  -1 (curve). 

addressing nearly homogeneous states close to equilibrium, as considered 
in ref. 13, is at all relevant to the intermediate or later stages of unmixing, 
where the system is very inhomogeneous and far from equilibrium. Thus, 
the approximate validity of Eq. (11) shown in Fig. 10 really comes as a 
surprise. 

A rather nontrivial behavior is expected, of course, if one of the rates 
gets much smaller than the other one; in particular, we expect that then the 
possible percolation of one component (or both components A, B in three 
dimensions) will have a marked effect on the phase separation kinetics. 
This behavior is outside the scope of the present study, however. 
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